Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Genome Med ; 13(1): 101, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269888

ABSTRACT

BACKGROUND: Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS: We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS: From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS: Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Computational Biology/methods , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Amino Acid Sequence , Animals , COVID-19/virology , COVID-19 Vaccines/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Female , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
2.
bioRxiv ; 2020 May 01.
Article in English | MEDLINE | ID: covidwho-825684

ABSTRACT

Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight (17% for the HEK293 glycoform) the level of surface shielding is disproportionately high at 42%.

3.
Sci Rep ; 10(1): 14991, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-766137

ABSTRACT

Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Adaptive Immunity , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Glycosylation , HEK293 Cells , HLA Antigens/metabolism , Humans , Immunity, Innate , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Cell Host Microbe ; 28(4): 586-601.e6, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-741138

ABSTRACT

The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Glycosylation , HEK293 Cells , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Protein Domains , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
5.
Antiviral Res ; 181: 104873, 2020 09.
Article in English | MEDLINE | ID: covidwho-638553

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and continues to spread around the globe at an unprecedented rate. To date, no effective therapeutic is available to fight its associated disease, COVID-19. Our discovery of a novel insertion of glycosaminoglycan (GAG)-binding motif at S1/S2 proteolytic cleavage site (681-686 (PRRARS)) and two other GAG-binding-like motifs within SARS-CoV-2 spike glycoprotein (SGP) led us to hypothesize that host cell surface GAGs may interact SARS-CoV-2 SGPs to facilitate host cell entry. Using a surface plasmon resonance direct binding assay, we found that both monomeric and trimeric SARS-CoV-2 SGP bind more tightly to immobilized heparin (KD = 40 pM and 73 pM, respectively) than the SARS-CoV and MERS-CoV SGPs (500 nM and 1 nM, respectively). In competitive binding studies, the IC50 of heparin, tri-sulfated non-anticoagulant heparan sulfate, and non-anticoagulant low molecular weight heparin against SARS-CoV-2 SGP binding to immobilized heparin were 0.056 µM, 0.12 µM, and 26.4 µM, respectively. Finally, unbiased computational ligand docking indicates that heparan sulfate interacts with the GAG-binding motif at the S1/S2 site on each monomer interface in the trimeric SARS-CoV-2 SGP, and at another site (453-459 (YRLFRKS)) when the receptor-binding domain is in an open conformation. The current study serves a foundation to further investigate biological roles of GAGs in SARS-CoV-2 pathogenesis. Furthermore, our findings may provide additional basis for further heparin-based interventions for COVID-19 patients exhibiting thrombotic complications.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/virology , Heparin/metabolism , Pandemics , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , COVID-19 , Humans , Kinetics , Molecular Docking Simulation , Protein Binding , SARS-CoV-2 , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL